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FOREWORD

This final report describes technical work accomplished during the
Labyrinth Seal Analysis program conducted under Contract F33615-80-C-2014.
The work described was performed during the period #% June 1980 to 26~

m@%& This contract with Allison Gas Turbine Division of General
Motors Corporation was sponsored by the Air Force Wright Aeronautical
Laboratories Aeropropulsion Laboratory, United States Air Force,

Wright Patterson AFB, Ohio, with Mr. Charles W. Elrod (AWAFL/POTX)

as Project Engineer. Technical coordination was provided by

1st Lt. Keith C. Topham.

The technical effort reported in this volume was performed by
personnel of Scientific Research Associates, Inc., Glastonbury,
Connecticut. The empirical data used to evaluate the results of the
Analysis Model development were provided by Allison Gas Turbine Division.

This report was submitted in four volumes in May 1985. Volume I
summarizes the development of the labyrinth seal Analysis Model. Volume Il
presents the user's manual for the Analysis Model computer code.

Volume III contains the experimental results and summarizes the Deaign
Model based on these empirical data. Volume IV presents the user's manual
for the Design Model computer code.

Publication of this rveport does not constitute Air Force approval of
the findings or conclusions presented, It is publishoed only for the
exchange and stimulation of ideas.
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1.0 INTRODUCTION

The present tread of aircraft gas turbine design has been
characterized by signiflicant iacreases in cycle pressure ratio and turbine
inlet temperatures required to provide higher thermal and propulsive
efficiencies. Also, lacreased interest in engine performance and fuel
economy has created additional emphasis for improving the efficiency of gas
turbine engines. These trends accentuate the need for improvements in
gsealing technology and the development of advanced design and analysis
capabilities to reduce gas path seal leakage, maintain costly veat leakage
to & ainimum, provide better control over sophisticated cooling circuits,
ard prevent high levels of seal leakage into critical aerodynamic locatioas
in the turbine gas path which can result {n considerable penalty from
thermal and momentum losses.

Curreat and advanced gas turbine engine requirements that impact
labyrinth seal design and performance include a broad engine power
operating range which usually results in a wide range of seal clearances.
Normally, secals are designed to run as tight a clearance as possible at the
saxinum missfion time condition. 1In setiing the design clearaace,
consideration {s given to transient differcatial growth, maneuver
deflections, machanical and thermal growthas, eccentricity, and
wanufacturing tolerances. However, with variable geometry engiaes and
sultiple role applicutions the engine seals will not always operste at the
design clearance nor provide ainimum leakage across the opevating
‘spectrum. lmproved seal design and analysis capabilities wust be developed
to address this problen.

Gas turdines require a variety of labyriath seal designs. The seal
configuration selected for a given application is based on the pufpose of
the seal and satfsfylag design criteria that {ncludes the followlng
consideratioas: axfal cavelope avatlable, axial travel, clearaace range,
potential wear, system sensftivity to @eal clearaaces, cooling flow
requivrements, seasitivity to damage in haandling, asscembly requirecments, and

pressure ratio.




Labyrinth seals are used throughout a gas turbine eagine, including:
compressor and turbine airfoil end seals, bearing compartment seals, aad
flow system seals to minimize or coatrol flow. The purposes of these seals
are not always the same. Labyrinth seals used in the flow path are
intended to minimize end leakage. Bearing compartment seals are iatended
to keep the oil in the bearing compartment and to minimize the amount of
air leakage and heat addition to the oil. Thrust balaace labyrinth seals
are located radially to provide a desired off-setting axial load component
to reduce beariag loads to the design level. Other flow system network
seals have geveral fuactions {ncluding: controlling leakage flows either
to a minimum or to a level to satisfy disc pumping and thus preveat hot gas
recitculation in a cavity, controlling cavity pressures to reduce axial
bearing loads, or preveating excessive leakage.

The variety of locations, functions, and operating conditions imposed
on labyrianth seals in a gas turbine engine rcquires a design and'analysia
capability that takes advantage of the nunérousrseal geonetries avaflable _
and accurately predicts the seal performance. Llabyrianth seal geometries
iaclude etraight-through secals, step sesls, and s variety of advanced
complex geometry designs. The seal knives may be vertical or slanted, the
kaives may be placed on a rotating or stationary surface. Seal lindo way
be smooth and soltd, honeycomd, roughened surface solid, striated, ¢
abradable (porous or non-porohs). Other seal geometry variables fnclude
knife edge thickness and sharpacess, clearaace, kanife plich, cavity depth
and shape, aumber of knives, step height, kaife location on the step, aad
knife angle. Acrodyasalc pacameters that must be consnidered ia seal design
" {nclude rotational speed, pressure rvatio, temperature, and Reynolds auaber.

1{ a labyriath seal deslgu i to de successful for the appllén:lod
{atended, an accurate scal desfgn and asalysis wodel i{s nccessary. The
design and analysis capabilities available today re.,; heavily on capirical
telationships which severely limit the application range. Available
analytical formulatlions were originated many years ago and do not take
advantage of modern flow fleld calcuation techanigues such as the advaaces
offered by solutfon algorithms for the Navier-Stokes equations. Available
seal desipn and analysis wmodels are reverely restricted relative to
analyzlog aew and aidvanced seal desipnan. Also, many of the geometric and

aerodynaaic parameters {a a lab seal have interfaciag effeocts which make it




difficult to accurately assess individual parameter effects from test

data. Therefore, to examine the numerous individual and combinations of |
seal geometric and serodynamic parameters experimeatally would be time ?
consuming and very expeasive. In addition, empirically derived models do

not provide the capability to assess new configuratioas nor do they provide

the design engineer with guidance on how to improve the efficieacy of the

seal beyond what information has been determined experimentally.

Therefore, a critical need exists for labyrinth seal design and
analysis calculation models that provide the seal design specifalist with
the analytical tools to calculate, study, understand and evaluate the
details of the labyriath seal internal flow field and to assess subtle
geometric changes relative to improving the seal efficiency. Final tuning
and verification of the resulting coafiguration would stil! be accomplished
on a seal test rig.

Ociginally, the design of a coaventional straight-through labyriath
seal was usually a compromise between the number of seal knives and a kanife
pitch that was large enough to reduce the kinetic energy carryover to a
minimum. However, numerous fanvestigators have identified a significent
number of additional performsnce {nfluence parameters. Today, the
qualified scal designer recognizes there are a large aumber of geometric
and aeradynamic parametors that influeace the parformance level of a
labyrinth seal. These paramseters, for s couveatioaal stratght-through
seal, {aclude: '

v Clearaance 0 Pressure vatlo

o Pitch o Knife angle

o Number of kaives o Land surface (smoolh, honoycomb,
o Knife tip thickaess striated, etc.)

o Rotattional speod o Knife height

o Cavity volume o Royaolds aumber

0o Konlfe shacpness o Eccenlricity

To the above 1ist several addittonal parameters can be added when a

ntep scal {8 coasidered. These additional parameters include:

o Step hetight o BDtstance f(roa seal kntfe to step face

o Step confipuration o Flow dirveciion

3




It should be noted that the seal performance influence parameters
listed above do not operate indepeadently. The inherent design of a
iabyrinth seal causes the individual geometric and aerodyamic influence
parameters to have overl&pping or interfacing effects. For example, the
effect of seal clearaance on leakage is significantly differeat depeandiag on
the knife pitch and aumber of knives. Therefore, a very large wmatrix of
{dentified parameter coubinations exists which determine labyriath seal
performance.

There are numerous types and applications of labyriath seals in a gas
turbine. The labyrianth seal may be a straight-through, slanted straight, a
back—-to-back or fir tree arraangement, stepped, or slanted stepped. Flow
may be “up” or “down” the step. The seal lands may be solid-smooth,
roughened, abradable (porous or noa~porous), or honeycomb.

The flow fields in the various types of labyrinth seals used in a gas
turbine have similar complexities but differ significantly betweea a
conventional straight-through and stepped seal (see Fig. 1). The stepped
seal has a mechaaism, the vertical step face, to spoil the through flow.
The straight seal has a core of through~flow (referred to as kinetic energy
carry-over) that results in higher seal leakage rates compared to a stepped
seal. Therefore, the step seal provides additional parameters for the
design engineer to consider.

The aumber of tests and amouat of hardware, time, and cost to develop
all labyrinth seal performance empirically are prohibitive. In addition,
any new labyrinth seal design concepts would have to be tested to determine
their performance. If one additional geometric or aerodynamic variable
that nad not been experimentally evaluated before is introduced or varied,
 thea not only must this new parameter be evaluated, but each geometric and
iaezodynamic parameter interface must also be evaluated to determine
_conibination effects. Therefore, 1t is desirable to supplement the
~ eﬁpilical approach and consider analytical techniques to assist {n the

desigr and analysis of labyriath seals. However, the fabyriath seal flow
fleld must be classified as one of the most complex and challenging for a
thaoretical analysis. The flow field {s turbuleat, separated,
pbmpress:h;e, viscous, has one wall rotating, and cxperiences streamwine
"vbrticity. If unsteadiness {8 preseat, then any analytical analysis that
18 not time-dependent may have Aifficulty attatiaing agreement with test

results,




There are several classical analytical methods available in the
literature for estimating labyrinth seal leakage. However, erch of these
methods is based on certain simplifying assumptions which limit the areas
of applicability. Several of the more recent theoretical methods will
yield reasonable estimates of leakage, but the area of applicability of
each method is restricted to a narrow raange of geometries and overall
pressure. None of the available methods account for more than four or five
variables. No general solution is available for calculating labyrinth seal
leakage flows, nor has an analytical method been developed that examines
the seal interior flow field to provide aerodynamic details and guidance to
improve the efficiency of the labyrinth seal.

The origin of the labyrinth seal can be traced to C.A. Parsons
(Ref, 1) who apparently intcoduced the concept of a steam turbine and
reported the event in 1892 (Ref. 2). The design concept was to provide a
tortuous path between high and low pressure regions by using a series of
non-contacting restrictions and chambers. The characteristic functions of
the restrictions were to coavert the pressure head into kinetic energy
which would then be dissipated as coupletely as possible in the intervening
chambers. The effecti: nses of this concept is shown by its continued use
in Lhe current most mouetit gas turbine designs,

Although the labyrinth geal is relatively simple in design, the
numerous geometric and sevodynamic parsmeters associsted with determining
the overall performance are numerous and complex as noted earlier.

However, theoretical formulations to describe the flow field through the
labyrinth scal have been attempted apparently starting with E. Becker in
1907 (Ref. 3). Closely following Becker was a paper by H.M. Martin

(Ref. 4). It is interesting to note that these two papers establish the

classical labyrinth seal theories which can be organized into two families:

(1) Treat the seal knives as a series of individual throttles

(Martin approach, Ref. 4).

(2) Treat the seal as a friction device (Becker approach, Ref. 3).
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Generally speaking, existing labyrinth seal flow calculation theories

make assumptions that place the theories in one of two classifications

(1) Small AP is assumed across each restriction.

2) Last restriction choked.

Stodola's (Ref. 5) and Martin's (Ref. 4) formulas assume small AP across
each restrictioun, i.e., all kinetic energy is recovered as internal heat in
the seal cavities. These formulas also assume the discharge coefficient is
1.0 for each restriction. These two often-quoted formulas, as well as
others that are similar, assume that the gas experiences an ideal
isothermal expansion across each séal knife followed by dispersion of the
kinetic energy and reheating before entering the next seal knife. The wmany
theoretical studies in this classification which have appeaved in the
literature are of little value in the prediction of leakage rates through
the commonly used straight labyrinth seal because the assumptions on which
they are based approach the conditions which are approximated only in step
seals. The authors of these theoretical studies seek to modiry the theory
with ecmpirical corvrection factors to make the calculation fit test data.

Theoretical analyses to dete have neglected or approximated the
carryover (sometimes referred to as velocity of approach) of kinetic energy
from knife to knife. This carryover factor varies substantially with
geometry and pressure vratio. Also, the discharge coefficient must be
evaluated for ecach particular knife (or stage) geometry and will vary
depanding on several factors including:

0 Knife tip thickness 0 Reynolds number

0 Clearance 0 Number of Knives

In addicion to the foregoing parameters, the carryover factor and
discharge coefficient may be effected by surface roughness, land porosity,

honeycomb and striated lands, and knife rotatioan,




Trutnovaky (Ref. 6), like Becker (Ref. 3), treated the seal leakage
as flow in a rough pipe. However, his solution of the basic equations
describing the flow is complicated and in general difficult to use.
Zabriskie and Sternlicht (Ref. 7), offer an approach that i1s an extension
and simplification of the method used by Trutncvsky. However, numerous
investigators have challenged this general approach as not being correct
relative to the physical considerations of the problem.

Must chaoretical approaches make a simplifying assumption regarding
the inteccavity vortex and eddies and give no help on how to improve these
cavitlien ro reduce leakage. It 1s known that the shape and size of the
cavity between seal knives affects the strength of the vortex and eddies
which convert the kinetic energy issuing from each knife into internal
energy.

It {s apparen: from the foregoing discussion that existing
theoretical methods, which necessarily employ empirically derived modifiers
for calculating labyrinth seal flows, have significant shortcomings. A
generalized theoretical approach with proven accuracy and reliability is
not available.

This situacion leaves the design engineer with the dubious task of
gselecting a method for hic needs from numerous methods with varying degrees
of accuracy and range of application. Furthermcre, the seal design
specialist does not have the analytical tools to examine the details of the
labyrinth seal interior flow field ani determire geometry changes that
would increase ses) cavity turbulence resulting in improved sealing
effictency. ,

The analysie tools required by the mechanical design engineer and the
seal! vesearch spuecialist are distinctly differant. The design engineer
requires a simplified "design” calcul:tion model thet will determine the
overall performance of s iabyrinth seal when selectad geometrv {s
specified. The desizn engineer also has 2 need for a cslculation aodel
that will provide dimensional criteria for an optimum seal configuration
for & given application when an absolute minimu. of information is
supplied, {.e., clearance, axial envelope, istationsal speed, and pressutre
ratio. The design model input format should be simple and the computer run
time should be afnimum for the model to be practical as a production

program., Incotporating available test dat? and generating seal nariormance
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data not currently available to update and expand existing tiieoretical
models that rely heavily on empirical correlations offers the most
effective approach for the development of an advanced “design® wmodel.

The seal research specialist requires an “analysis” calculation model
that provides the aerodyramic details of the seal interior flow field in
order to determine and evaluate the effects of the numerous geometric and
aerodynamic parameters incorporated in the design of conventional
straight-through and stepped seals. This capability will enable the seal
specialist to identify and analytically evaluate design improvements to
obtain higher efficiency labyrinth seals as well as to improve the accuracy
of conventional seal design leakage calculations.

Recent developments in the phenomenological models of internal
turbulent flows shows that the methodology has progressed to the point that
the complex turbulent flow field within the labyrinth seal interior may be
calculated via direct analysis using Navier-Stckes computer codes presently
available, modified for the geometry of a labyrinth seal. The successful
application of a compressible time dependent Navier-Stokes solution would
provide a major breakthrough in seal analysis technology.

The value of a Navier-Stokes solution method for the labyrinth seal
leakage calculation is that it can potentially analyze most of the
geometric and aerodynamic effects individually and in matrix combinations.
There may be sowe effects that cannot be completely modeled. In these
cases, test data may be used to support and expand the Navier-Stokes
solution method.

Labyrinth seal design {mprovements have been limited because the
tools to analyze the effects of geometric changes or unique configurations
do not exist except in a very fundamental or simplified unalysis form. The
availability of a Navier-Stokes solution would provide a capability to
study and analyze many complex geometric shapes and configurations that can
only be evaluated presently through expensive and time consuming tests.
Although the Navier-Stokes solution may be limited in calculating the exact
level of performance for exotic seal configurations, it will guide the
engineer, through performance trends, to a more efficient design. The
final design should be tested to verify performance characteristice of the

seal.




In regard to Navier-Stokes solutions, several items need to be
considered. 1t is clear that a viable analysis which simulates the seal
flow field must allow for flow ranging from the low subsonic regime to the
transonic regime, must include possible shock waves, must allow for
dominating viscous effects and must allow for very large regions of
recirculation. These considerations clearly dictate a Navier-Stokes
approach to the problem.

In most instances the Navier-Stokes equations are so intractable that
only numerical solutions can be obtained. Numerical techniques for solving
the Navier-Stokes equations are discussed by Roache (Ref. 8) and more
particularly for the compressible Navier-Stokes equations by Peyret and
Viviand (Ref. 9). Peyret and Viviand singled out three techniques, the
explicit scheme of MacCormack (Ref. 10), the scheme due to Widhoff and
Victoria, (Ref. 11) also explicit, and the implicit scheme of Briley and
McDonald (Ref. 12). The technique of MacCormack (Ref. 10) has been very
effectively applied for instance by Shang, Hankey and Law (Ref. 13) in a
shock wave-boundary layer interaction problem. However, the need to
compute large regions of relatively low speed recirculating fluid
interspersed with local high speed throats in the labyrinth seal problem
could make the stability bounds of the MacCormack scheme very restrictive.

As a result in the labyrinth seal problem, unacceptably long computer
run times could result from the required locally refined spatial meshes
with the stability restricted scheme. The technique of Briley and
McDonald (Ref. 12) on the other hand, is not restricted by the stability
bounds of the MacCormack scheme and the Widhoff and Victoria scheme and,
thus, 1is better suited for the labyrinth seal problem than either of the
other two candidate algorithms. For these reasons the Briley-McDonald
(Ref. 12) technique was used in the present effort to predict the detailed
flow fleld tn the lahyrinth geal investigation.
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2.0 ANALYSIS

2.1 Goveraing Equatioas

The governing equations utilized in this study are the ensemble
averaged time dependent Navier-Stokes equatioans. These equations are the
mathematical statement of the physical coaservation laws of mass, momentum
and energy for one phase fluid dynamic systems. Uslng vector notation,

these traasport equations can be respectively written as

op -
?i—'='-V“(,:V) (1)
o e — =
-5;-(;«\/)=—V°(pVV)+V-r—VP (2)
and
o)

Al —— ‘A | - - - - -
'5"‘[/:(04"‘5 V~V)]=-V‘[p(0+-§ V'V)V]-V'q + V(r:V)-V(PV)

(3)

vhere p {8 the fluid deasity, v is the Bulerian velocity vector and U is
the spectific internal encrgy. The thermodynamic pressure, P, is related to
the temperature, T, and density, o, by the perfect gas cquation of state

R
Prpw W
where R {8 the unfversal gas constant and M {s the mixture molecular
weight. The stress teasor, T, 18 related to the velocity vecter, 3. by the

relationship

-y — 2 -
T u(UVEUVY - /50y (5)
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where u 18 the viscosity while the heat transfer, ;, i{s related to the
temperature, T, by the Fourier relationship

q:=-KkVT (6)

where x is the thermal coaductivity. Eq. (3), the energy equation,
represents the balance between the time rate of charge of the internal plus
kinetic energy (;JHIZG- \7), the coavection of that energy, the heat traansfer
and the stress and pressure work., Defining the static eathalpy by

AP
hE U+ — )]
P

the energy equation can be rewritten as

3 | = =1 0P | = = - -
'5;'[p(h+; V-V)] " = -V-[p(h-b-z-V'V)]-V‘q + V(v V) (8)

| wo -
ho 8 h +ZV-V (9)
yields the more compact form, viz.,
9 O T (ph V) -V T+ V(Y €10)
n— -  Gasmtess B o= L h - . - .
ar (e = (phy q (r:V)

By dotting the velocity vector, 6, vwith the momeatum equation, Eq. (2) aad
using the vector {dentities

-9 - 0, VV_ _VV 0
V‘s;-(pV)lE'-(P > )+ ] (11)
and
- —— V'v o .v.'v -
v-V(pvV) = V-[(p_“z‘“)V]+"“é‘—V~(pV) (12)

11
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and applying the continuity equation, Eq. (1), one cau obtain the so-called

mechanical energy equation

3 Vv VNV o - —~
=5 =9 [(p —-IV]-V 9P 4V (90 (13

Subtracting the mechanical energy equation, Eq. (13), from the energy

equation, Eq. (8), and applying the vector identity
V(rV)aVAT 1)+ v iUV R ¢ L))
and using the definition of energy dissipation, ¢, as
d=r.VV (15)

one obtains an alternate form of the energy equation expressed in terms of

the time rate of charge of the static enthalpy

[/ P — - (16)
3t (PN =5 ==V (phV)- V- q+ V- VP + P
The static enthalpy, h, can be related to the temperature, T, by the
relationship
T
he [egiryar
P
T, (17)
where ¢p is the specific heat at constant pressure. 1If a calorically
ideal gas is assumed, (cp is a constant).
h=C.T (18)

[}

Eq. (16) can be fucrther simplified and written in terms of temperature.

12




The system of coupled nonlinear partial differential equations
represented by Eq. (1), (2), and (16) are the basis of the governing
equations used in this study. The equations are valid for both laminar and
turbulent flow. However, for turbulent flow, all variables are ensemble
averaged (Ref. 14) and the viscosity and thermal conductivity, k, must be
considered as effective values. Thus, the viscosity must be considered as
the sum of the laminar and turbulent viscosities (the turbulent viscosity

comes from the Boussinesq approximation to the Reynolds stress terms),

A YIS 2 (19)

The viscosity is related to the thermal conductivity and the specific heat
by the concept of a Prandtl number (which is presumed to be known)

c
Ky = ot (20)
Pry
C
Ky * ek (21)
PrT
and
k s k‘+ k‘. (22)

In this study, two methods were used to represent the turhulent viscosity,

uee The first uses the algebralce mixing length of Prandtl where
2
By = ply J0O:O (23)

where D:D {s the second varlant of the mean fluw rate of deformation

tensor, f.e.,

‘b 2 -2
0:0 = m + 3(\7~V) (24)

and Ly {8 the mixing length which will be discussed at a later time,

13




The second method utilized in this study is to assume the
Prandtl-Kolmogorov relationship (Ref. 15) for turbulent viscosity, the

gso-called k-c¢ model

K= C#—?— (25)

where ¢, is a 'constant' (to be discussed at a later time) k is the

turbulence kinetic energy defined by

ucz + v|2 + wtz

2 (26)

and € is the dissipation of turbulence kineric energy. Partial
differential equations govern the distribution of k and € in the flow. For
a discussion of these equations, the reader is referred to Refs. 16

and 17. The resultant equations are

opK - Hy ,
i —V‘(pVK)*V'(?“VK)* (4y D: 0 = pa) {27)
and
2P v eyt T (PT0) + S (C kDD = €, pe) (28)
—c =Y ¢eK e VE — : - <
Y P 3 K By eP

Thus, when a k-¢ turbulence model is used, two additional coupled nonlinear
partial different{al equations are added to the original governing partial
differential oquations,

In gummary, the governing system of cquations used in this study
{nclude the partial differential equations, Eqs. (1), (2), and (16) plus
(27) and (28) tf a k-c turbulence model is used. The constitutive
relationships are represented by Bqs. (4)~(7), (15), (17) or Bqs.(18),
(19)-(22), and (23) {f a mixing length model is used, or Eq. (25) {f a k-¢
turbulence mode! s used.

14




2.2 Coordinate Systems

Application of the governing system of partial differential equatioms
to a given problem is not in general straight forward and several decisions
must be made before these equations can be put in a form suitable for
solution by numerical techniques. First, a coordinate system must be
chosen. For the cases of interest in this study, a body or boundary
conforming coordinate system is normally used. Except for the simplest
cases, a noncartesian coordinate system must be employed. In many cases a
nonorthogonal coordinate system must be used, e.g., the case of a seal with
a tapered knife blade. Use of a noncartesian coordinate system requires
the choice of both the components of velocity vector, 6. and the cholce of
the divections in which the vector momentum equation is to be expressed.
For instance, the velocity components and the directions in which the
momentum equations are written can be aligned with the coordinate
directions (Ref. 18), or if one desires, the velocity components and
momentum equation directions could be aligned with the cartesian or
cylindrical polar coordinate directions (Refs. 19-21)., Combinations of the
above are also possible, although to the author's knowledge, have not been
uged to date.

In this study two basic types of geometric vonfigurations are
congidered: (1) planar configurations and (2) axisymmetric
configurations. The planar configurations are utilized primacily co
aimulate experimental setups where the data {s taken {n a two-dimensional
planar environment. The axisymmetric configurations are used primarily to
simulate engine component performance {n a rotating or nonrotating (dut
still axisymmetric) environment., When a rotating system {s analyzed, the
flow i{s three-dimensional, however, there {53 sysmetry with respect to the
rotating direction, if.e., 3/30=0., Thus the governing partial diffecrential
equations can be expressed {n terms of two coordinate directions, but three
velocity components are requited to define the velocity vector and three
momenta equations aust be solved.

The remainder of this section will describe the derivation of the
poverning system of partial differential equations to be used for planar
nonorthogonal configurations. The derivation for axisysmetric

conf{gurations {3 similar and the detalls ave discussed in Ref. 19,

15
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Although in this study the governing equations were only solved in two
dimensions and axisymmetric flow, the technique is applicable to two and
three space dimensious., For generality here the three-dimensional
derivation is presented.

The technique utilized in this study is similar to that reported in
Refs. 19-21. The dependent variables are chosen as the three cartesian
velocity components, uy, u, and uy, the density, p, and the static
enthalpy, h,. The momentum equation is also expressed in terms of the
three carteslan directions ;1, ;2 and ;3. These governing partial

differential equations in cartesian coodinates can be expressed in the form

ow oF; .s 29)
P | ¢

where r 9
P
pPY2
W = puy
P

PR | (30)

- -l

r~ -

and 2
U + P + ¢
PY, XX,

1y lsx‘ ‘ (31)

2
pu, +P + v o (32)




uu, + T
PUsY, XX,
pusuz + T-x- X

Fys | pus*P+ 1y 5 (33)

and

(34)

0000

2 -
?V’V
P)

pC0:0
+V.

<q +

ba

vhere in tensor notation, the normal and shear stress components and the

heat transfer are respectively

du 2 - ,
(2--1 -=2V.-v) (3%)

( dui OUi)
w 2 Yo 7Y U G
nE o EE R FIMFT (36)
du; du; 2
0:0 = -'é-(.___'_ . ...__i)
ox;  Ox (37)
— GUi
V-ve di’. (38)
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aad aT
Qe F = A (39)
xi dx‘

Transforming Eq. (30) to & 4cneral coordinate system in which the
general coordinates, yJ, are related to the cartesfaan coocdinates

;1, ;2 and ;3 by the relatioaship
y' = YR, T,y Ty) (40)

and use of the chaia rule yields

aw  oF dy
ZN vs “n

Defining the Jacobian determinant of the inverse transformation, J, by

X, 0%, %,
ay' yt 9y

(X, ,%,,y) ;xX, O, 0%, (42)

-
il
|

aly',ya, v | | oy a2 oy
K, OXy 0%y

dy‘ dyz 6y3

and multiplying Eq. (41) by the Jacobian ylelds

aw oyl oF,
o0 TR gy (43)

This form is sometimes referred to as the weak conservative form. B8y
assuming that the Jacobian is not a fu-:tion of lime, t, one can rearrange

Eq. (44) i{a the form

ay 3, 3y




Howeéver, it can be shown that (Appendix A)

j
__a_j_ W -0 (45)
dy a-il

The derivation of Eq. (44) in fact is general {n that if the
traasforuwation of Eq. (43) had a moving coordinate system, the Jacoblan
could be taken inside the time derivative, and thus the transformed

equation can be written in the fora

d J dyj
—(JW} = "“y(d-:—ﬁ) (46)
at dy X

This form of the transformed governing partial differential equatioas is
sometimes veferred te as the strong conservative form, and this is the form
of the governing z2quations solved in this study. The primary advantage of
using the cartesian velocity components and solving the scalar momer‘a
equations associated with the cartesian directions is that the aumber of
terms of the governing differeatial equations is kept to & minimumr for
nonorthogonal systems. If there is no specific reason why the carte.tan
velocity components and directione for the momenta equations are unsuitable
for a glven application, this is the most efficient means of solving the
governing equations. For this study and many otiier applications this
technique duves aot appesr to have any disadvantages vis a vis other
methods, and hence that procedure was chosen here.

in three dimensions each coavective and pressure term from the
cartesian equations in general becomes three teras in the transformed
system. Fach siress and heat transfer term becomes nine terms {n the
transformed system. For two-dimensional flow, the corresponding numbers
are, two and four. To define the stress and heat transfer terms i{n the
transformed coordtnate system requires applying the traasformatfon to
Eqs. (35-39)., This yields in tensor aociation,

(2 2y du) ‘?"v V) (47)
- 2 e - -V
. =y H ox, oy} 3
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(48)

and

V-vs: — (49)

and

q'x-i S = K — "_—]" (50)

2.3 1Initial and Boundary Coaditioas

Steady solution of the system of governing partial differential
equations represented by Eq. (46) is obtained by time marching this system
of equations until the steady state i{s reached. Before the soluticn
procedure is described two important aspects must be discussed: (1) the
initial conditions and (2) the boundary coaditions. Aay procedure which
utilizes either a time marching method to obtain a steady state (or
transient) solution or a Newton-Raphson fteration procedure requires some
taitial guess of the flow variables (in this case all the dependent
variables and other necessary variables such as pressure, temperature,
viscosity, etc.). In some of the simpler cases, a reasonable approximation
to a converged solution can either be guessed or obtained through physical
reasoning. However, since the range of geometries considered under this
effort were 8o diverse, it was felt that no treasonable geaneral {nitial
guess procedure could be developed. The approach taken here was to assure
that the flow was initially stagnant (all velocity components were zero)
by assuming that the pressure and tomperature were a constant and set equal
to the stagnation conditions of the source flow. The downstream or back
pressure {8 thea lowered to some des{red level over a period of time, and

the flow ts drawn through the seal uatil a steady state is achieved.
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This technique has the advantage of being easy to implement in any
geometric configuration. In addition, the lowering of the back pressure
can be considered to be similar to an experimental apparatus where the
source tank is pumped up and the back pressure gradually lowered by opening
a downstream valve.

To obtain a solution of the governing system of partial differential
equations represented by Eq. (46), it is necessary to define boundary
conditions on each bounding surface of the computational domain. For the
purposes of this investigation boundary conditions can be classified as
occurring on three different types of bounding surfaces: (1) walls or
solid surfaces, (2) inlets and (3) exits. The boundary conditions utilized
on each different type of surface will now be discussed in turn. Analysis
of the characteristics of the boundary layer equations shows that (in three
dimensions) four conditions must be specified on walis. For this study,
the no-slip conditions are used for the tangential (to the wall) velocity

components, i.e.,
up = 0 (51)
and
Uy = 0
T, (52)

wherve the subscripts T and Ty refer to the two tangential velocity
components. (For two-dimensional flow only one tangential velocity
component is used)., For the normal velocity component either the normal
velocity component ocr the normal mass flux is specified, i.e.,

Uy = Uy (53)

or

Puy 2 My (54)
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where the subscript w refers to the specified wall value. The fourth
condition used, the thermal condition, either specifies the wall as being
adlabatic or specifies the wall temperature. These conditioas can be

written respectively as
Ny VT =0 (55)

or
T =T, (56)

vhere in this case ;w represents the unit vector normal to the wall., In
addition, a fifth conditioan (in two-dimensioans a fourth) not required by
the characteristic analysis, is used for convenience to close the set of
equations. The need for this fifth condition could be removed by the use
of one-sided differeace approximations or by applying one of the governing
equations at the wall. In this study, the second method was used and the
boundary layer approximation to the normal momentum equation was applied at
the wall. This can be expressed as

Ny VP20 (57)

Studies have indicated that there i{s little difference between using this
equation or using the full normal momentum equation. The condition of
Eq.(57) approximates the normal momeantum equation to order Re~! for
vigscous flow at a no-slip surface. The symmetry equations are meant to be
applied on a plane or axis of symmetry. The normal component of velocity

is set equal to zero on the axis of symmetry, i.e.,

n,'V'O (58)

where ;9 i3 the unit vector normal to the axis or plane of gsymmetry. In
addition the normal derivatives of the remaining two tangential components

of velocity are set to zero. Two other conditioas must be set on the axis




or plane of symmetry. Usually the symmetry conditions on pressure and

temperature are used, viz.,

ng -VP=z 0 | (59)
and
ng VT2 0 (60)

On inlets the characteristic analysis shows that four conditions must
be set (for three-dimensional flow). The procedure used in this study is
to divide the flow on the inlet into two regions: (1) a central core where
the flow is essentially inviscid and (2) the attached boundary layers where
the normal pressure gradient is zero. This techunique, which can be called
the 'two-layer model', sets a constant stagnation pressure in the central
core region of the inlet boundary. In the attached boundary layer(s), the
static pressure 18 set at the central core edge value, and the form of the
streamwise velocity profile is met. 1t is to be emphasized that the
magnitude of the streamwise velocity is not specifically set, Rather
interaction of the core flow and the rest of the flow with the inlet
boundary layers sets the magnitude of the boundary layer inlet streamwise
velocity profile. 1In this study two forms of boundary layer profiles were
used: (1) for laminar flow the von-Karman-Polhausen (Ref. 22) profile was
used, and (2) for turbulent flow the Maise-McNonald (Ref. 23) profile was
used. In addition to the 'two layer model' boundary condition, two
additional velocity conditions must be specified., In this study the flow
angle between the streamwise velocity component and the transverse
component was specified (usually as zero) and if the apparatus was rotating
a swirl velocity profile was specified. The fourth boundary condition was
the thermal condition that the stagnation enthalpy on the inlet boundary
remains constant. In addition, a fifth condition, not required by the
characteristic analysis, is used to numerically close the set of
equations. In this case the weak condition that second derivative of
pressure normal to the inlet plane equals zero was used., The advantage of
this condition {s that {t allows pressure waves to exit the computational

domain rather than reflect off boundaries.
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A characteristic analysis of the governing equations on an exit plane
shows that for subsonic flow only one condition must be set. In this study
the condition is met by setting the back pressure to some desired value,
Thus, since the upstream (inlet) stagnation pressure is set in the inlet
boundary core region, the mass flux is determined by these two variables
and the loss mechanism that occurs in the physical domain. As before to .
numerically close the set of equations, four more exit conditions mus> be
set. In this case weak conditions are set, viz., the second derivative of
the three velocity components and the temperature are set to zero, the
so—-called parabolic assumptions.

If the two-equation (k-¢) turbulence model is used, two additional
partial differential equations must be solved, and hence initial and
boundary conditions must be specified for these equations. The procedure
used in this study 1s to obtain a converged solution with a mixing length
model, then use the assumption of an 'equilibrium turbulence model' as an
initial guess for the k and € fields, and obtain a converged solution with
a k-¢ turbulence model. The 'equilibrium turbulence model' assumes that
the production and dissipation of turbulence kinetic energy are balanced
and that the turbulent viscosity, ur, can be calculated from the mixing
length model, i.e., Eq. (27). Thus by setting the source term of Eq. (27)
to zero and by using Eqs. (23) and (25), 'equilibrium' values of k and ¢

can be obtained, viz.,

Ymo:0 (61)

and

(62)

In this study the Jones-Launder (Ref. 16) formulation for C, is used

)

"1+ 0.02Rey (63)

CF = 0.09e
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where Rer 1is the turbulence Reynolds number defined by

i
Rey = 1 g (64)
C# Hy
Therefore
_ 2.8
|+ 0.02 LT (63)
cp = 0.09e Cumy

Eq. (65) is-a transcendental equation in C, (as an initial guess ur is
calculated from the mixing length model and the laminar viscosity up is
known) which is solved by a straightforward 'Newton-Raphson' iteration
technique. Once this is done the value of C, can be substituted into

Eqs. (61) and (62) and initial guesses of the k and € fields obtained.

_ Boundary conditions for the k and € equations are as follows: (1) on
inlets the values of k and € are frozen at their equilibrium values from
the converged mixing length solution, (2) on walls the values of k and ¢
are set to zero, (3) on axis or plane of symmetry the normal derivatives of
k and ¢ are set to zero, and (4) on the exit plane the second derivatives

of k and ¢ are set to zero.

2.4 Numerical Procedure

The numerical procedure used to solve the governing equations is a
consistently split linearized block implicit (LBI) scheme originally
developed by Briley and McDonald (Ref. 12). A conceptually similar scheme
has been developed for two-dimensional MHD problems by Lindemuth
and Killeen (Ref. 24). More recently Beam and Warming (Ref. 25) have
derived this and other related schemes by the method of approximate
factorization. The procedure i{s discussed in detail in Refs. 12 and 26.
The method can be briefly outlined as follows: the governing equations are
replaced by an implicit time difference approximation., Terms involving
nonlinear{ties at the implicit time level are linearized by Taylor
expansion in time about the solution at the known time level, and spatial

finite difference approximations are introduced. The result {8 a system
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of multidimensional coupled (but linear) difference equations for the
dependent variables at the unknown or implicit time level. To solve these
difference equations, the Douglas~Guan (Ref. 27) procedure for generating
alternating-direction implicit (ADI) schemes as perturbaticns of
fundamental implicit difference schemes 1is introduced in its natural
extension to systems of partial differential equations. This technique
leads to systems of coupled linear difference equations having narrow
block-banded matrix structures which can be solved efficiently by standard
block-elimination methods.

The method centers around the use of a formal linearization technique
adapted for-the integration of initial-value problems. The linearizatiom
technique, which requires an implicit solution procedure, permits the
solution of coupled nonlinear equations in one space dimension (to the
requisite degree of accuracy) by a one~step noniterative scheme. Since no
iteration is required to compute the solution for a single time step, and
since only moderate effort is required for solutic.. of the implicit
difference equations, the method is computationally efficlient. This
efficiency is retained for multidimensional problems by using what might be
termed block ADI techniques. The method is also economical in terms of
computer storage, in its present form requiring only two time-levels of
storage for each dependent variable. Furthermore, the block ADI technique
reduces multidimensional problems to sequences of calculations which are
one dimensional in the sense that easily-solved narrow block-banded
matrices associated with one-dimensional rows of grid points are produced.
A more detailed discussion of the solution procedure as discussed by
Briley, Buggeln and McDonald (Ref. 28) is given in the Appendix B.

2.5 Arcificial Dissipation

One major problem to be overcome in calculating high Reynolds number
flows using the Navier~Stokes equations is the appearance of spatial
oscillations assocfated with the so-called central difference problem.
When spatial derivatives are represented by central differences, high
Reynolds number flows can exhibit a saw tooth type oscillation unless asome
mechanism {s added to the equations to supptess their appearance. This
dissipation mechanism can be added implicitly to the equations via the
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spatial difference molecule (e.g. one~sided differencing) or explicitly
through addition of a specific term. The present authors favor this latter
approach for two reasons. First, if a specific artificial dissipation term
is added to the equations, it is clear precisely what approximation is
being made. Secondly, if a specific term is added to suppress
oscillations, the amount of artificial dissipation added to the equations
can be easily controlled in magnitude and location so as to add the minimum
amount necessary to suppress spatial oscillations. Studies can also be
easily performed to evaluate the effect of the explicitly added dissipation
on the solution.

Various methods of adding artificial dissipation were investigated in
Ref. 12, and these were evaluated in the context of a one-dimensional model
problem. The model problem used was one~dimensional flow with heat
transfer. Flow was subsonic at the upstieam boundary, accelerated via heat
sources until a Mach number of unity was reached and then accelerated to
supersonic velocity by heat sinks. The exit back pressure was raised to
cause a shock to appear in the .supersonic region. This basic
one~dimensional problem contained many relevant features including strong
accelerations and the appearance of a normal! shock wave, Therefore, it
served as a good test case for various forms of artificial dissipation
which could be used in the presence of shock waves,
' The results of the Ref. 29 investigation led to the conclusion that
for the model problem a second order artificial dissipation approach was
the best of those considered. This approach adds a term of the form
vart 324/322 or 3/32 {varr 36/3Z) to each governing equation where
é = p, u, v, w for the continuity, x~momentum, y-momentum and z-momentum

ecquations respectively and vgyee is determined by

Uz A2 )

art

The A% in Eq. (66) i3 the distance between grid points in a given
coordinate direction, Uz is the velocity in this direction, oz is the
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artificial dissipation parameter for this direction and Vv is the effective
kinematic viscosity. The equation determines V4. wWith Vu.¢ taken as

; the smallest non-negative value which will satisfy the expression. It

: should be noted that in two space dimensions each equation contains two

' artificial dissipation terms, one in each coordinate direction. For
example, the streamwise momentum equation expressed in two-dimensional

i Cartesian coordinates would contain the artificial dissipation terms

a%w 2w

(VO")x —;)_x—z_ + (”art)z —;;2— (67)

-
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3.0 RESULTS

The primary objective of the computational effort is to demonstrate
the capability of the previously described numerical technique to
accurately calculate the flow in realistically configured labyrinth seals
at typlcal operating conditions. It is hoped that the achievement of this
objective will provide insight into the details of the flow structure not
easily obtainable by experimental methods, and that this demonstration will
lead to the use of this analytical tool in the design of future labyrinth
seals. In order to achieve the above objective, a series of calculations
were performed. These calculations can logically be divided into four
categories: (1) calculations designed to show the ability of the numerical
procedure to accurately predict the leakage of various labyrinth seal
designs at typical operating conditions, (2) calculations to obtain a
performance curve for two seal configurations, (3) calculations of the flow
for two seal configurations which can be compared with experimental data
obtained at Allison Gas Turbine Operations (Ref. 30) for the same seal
configurations and at the same operating conditions, and (4) a
demonstration calculation of the ability of the numerical procedure to
calculate the flow in a sample configuration while the seal assembly is
rotating.,

Before going into the details of the calculations, it is desirable to
define the labyrinth secal nomenclature thut is appropriate to the
configurations considered in this study. The geometric capability of rhe
computer program developed under this study allows for the analysis of a
wide variety of both conventional straight-through and stepped seal
configurations. Nomenclature that is common to both types of seals is
shown {n Fig. (2). CL is the clearance between the seal knife tip(s) and
the stator or land. KI' represents the knife blade thickness at the tip.

K8 ts the knife blade taper angle, and KO isx the knife blade slant angle
relative to the rotor surface. Kl represents the knife blade height and
KP {8 the distance bhetween successive knife blades. For stepped seal
configurations DTC is used to represent the aminimum horizontal
distance~to~contact between the knife blade and the stator, and SH {s the
step height. In addition for stepped seal configurations the leakage flow
direction 13 referred to as efther from the large-to-small seal diameter
(LTSD) or trom the small-to-large secal diamoter (STLD).
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The flow reference conditions were determined in a similar manner for
all cases considered. The inlet stagnation pressure, P,, and stagnation
temperature, T,, were specified as was the ratio of upstream tc
downstream pressure, P,/Pp. In addition an estimate of the leakage
rate (mass flow), W, through the seal was obtained either from the results
of the Allison experimental program or the Allison design model. Given the
upstream pressure and temperature, the upstream density, pg, can be
calculated from the perfect gas law while the upstream viscosity, u, can be
calculated from Sutherland's viscosity law, Ref. 31. The average inlet
velocity, V, can be calculsted from the relationship (for the cases
considered the inlet Mach numbers were on the order of (.01, hence the
stagnation and the static conditions are virtually identical)

w

= 68
\ Poh (68)

where A is the known inlet area. All cases considered in this study had a
spanwise distance, of 6.28 {n. = ,160 m. The above now yields enough
information so that reference (or upstream) Reynolds and Mach numbers can
be calculated. Using the above upstream variables as reference quantities,
the governing equations can be nondimensionalized. When a case is
converged for a given ratio of upstream to downstream pressure ratio
(sometimes rveferred to as the seal expansion rati{o r = Py/Pp), the

leakage rate through the seal can then be recalculated and compared to the
inftial estimate. Por instance {f the calculsted nondimensional average
upstream velocity V is 0.5, the computed leakage rate would be 50% of the
estimated rate. The calculated reference Reynolds and Mach nuambers would
correspondingly have to be reduced by 50%., The tnitfal condf{tions for all
cases considered was to assume that the flow was initially at rest at the
stagnation conditions. The back pressure was then gradually lowered until
the desired value of Pp was obtained. The solution was then time marched
until a steady state solution was obtained. The output of each calculation
consists of the flelds of the independent and dependent variables, {.c.,
the Certeslan or cylindrical polar coordinates and the velocity coamponents,
density, enthalpy and, {f appropriate, the turbulence kinetic energy and
the turbulence diaaipation, In addicion any of the derived variabloa such
48 pressure, tempetrature, viscosity, stream tunctlon, total temperature and
pressure, ete. can be calculated and displayed.
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3.1 Calculation of Leakage Rates

The majority of the calculations performed under this effort were
done in the first category of calculations and were designed to demonstrate
the ability of the computational procedure to predict the leakage rate for
a large number of straight-through and stepped seal configurations at
various flow conditions. A total of 18 cases were rum, 13 straight-through
seal configurations and 5 stepped seal configurations. Tables ! and 2 and
Figs. 3 and 4 give a brief synopsis of the configurations considered, the
flow conditions and the modelling assumptions under which the calculations
were performed. Several of the calculations were made before the energy
equation opiion was operational in the computer code. For these
calculations the energy equation was approximated by assuming that the
stagnation eanthalpy, h,, was constant, For flow in the Mach number range
considered in this study (essentially incompressible on the inlet plane to
a peak in the flow field of between 0.7 and 1.6 depending on the flow
conditions and the geometry of the seal), this assumption, which neglects
heat conduction and stress work, is a reasonable approximation to the
physics. 1If, however, the walls are nonadisbatic, {.e., either highly
cooled or heated, the assumption of zero heat transfer is invalid. For the
cases considered under this study, the walls were neither heated nor
cooled. Hence the adiabatic assumption was valid. In addition the earlier
calculations presumed that the inlet flow was fully developed, and, hence,
{n these caleculations a one-saventh (1/7) power law (Ref. 22) was used for
the inlet streaswvise velocity profile, For later calculatlons, a boundary
layer equal to 502 of the clearance was assumed on both the felet section
of the rotor and the land. Within the boundary layers, the method of NMaise
and NchDonald (Ref. 23) was used to obtain the turbulent stroamwise velocity
profile. The mixing length turbulence model utilized was a2 hybrid model
consisting of a Willlamson's wodel (Ref. 32) {n the reglons away from solid
walls and a van Driecst dsmped model (Ref. 33) {n the reglons wear walls.

In practice, both mixing length values were calculated at each grid grint
and the locally mintmum value chosen. This gives a smooth variation of

mixing length throughout the flow field. 1In the later c¢alculations, the

flows werte calculated with hoth the mixing leagth and the previously
discussed k-¢ turbulence model.




The number of grid points utilized for each calculation is presented
in Tates 1 end 2. The basic philosophy was to concentrate the grid points
in the regions where tiie largest physical gradients of the dependent
variables were expected. These areas were: (1) in the region between the
tip of the knife blades and the land, (2) in the wall boundary layers,
and (3) in the vicinity of rapid expansion or compression. The total
streamwise extent of the physical domain chosen for the computations was
300 clearances in length. The inlet plane was chosen at a distance of
50 clearances upstream of the front face root of the first knife leaving as
much as 250 clearances (depending on the seal configuration) from the last
knife to the exit plane. The relatively large extent of the domain
downstream of the last knife was required by the existence of a large
streamwise recirculation zone downstream of the last knife for each
case investigated. This large domaln was needed to ensure that the
recirculation zone would remain inside the region chosen for the
computation. A typical distribution of grid points is shown in the
vicinity of the seal assembly (see Fig. 5). In the regions both upstream
and downstream of the knives, the streamwise grid spacing was considerably
larger since in these regions the streamwise gradients were relatively
su:all.

Both Tables 1 and 2 compare the calculated leakage rates, Wgoale,
with the Allison correlation leakage rates, Woypre The Allison
correlation leakage rates are a composite of the calculated leakage rates
as determined by the Allison design model and experimentally measured
leakage rates. The Allison design model (Ref. 30) is based on a multiple
regression analysis of a large bank of experimental data. The design model
can predict the leakage rates for a wide variesty of seal geometries at
various flow conditions. The data used as the basis for this model are
taken from experiments performed on full-scale labyrinth seals since this
model is intended to be used to design contemporary gae turbine engine
gseals. The calculations performed under this effort, however, were made
for large-scale (nominally 10X scale for the straight-through seals and
5X scale for the stepped seals) labyrinth seals as were the leakage rate
measurements performed under the experimental portion of this effort. When
an experiment had been performed on the particular labyrinth seal at the
specified flow conditions, the Allison correlation leakage rate was taken
to oe the experimentally determined value. This i{s noted on Tables 1

and 2 by the Allison designaced test number. However for several of the
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cases calculated, no experimental leakage rates were available. To
determine correlation leakage rates for these caseé, the following
procedure was used. First the cases were divided ianto straight Chrough aad
stepped seal configuratioans, Tables 1 and 2, respectively. For the
straight through seals, the Allison design model was used to predict the
leakage rates for the cases for which experimental data existed, i.e. cases
5, 6, 7 and 7A. For these cases it was found that the Allison design model
underpredicted che leakage rates by an average of 12%. It 1s felt that
this underprediction is due to the Reynolds aumber effect of the smaller
full-scale seals used in the desiga model. Hence, to account for this
effect for the cases where experimental data were aot available, the
Allison desiﬁn model was used to determine preliminary values which were
then scaled by the factor of 1.12 to account for the large-scale seals used
in the calculation.

Of the four stepped seal cases considered in this study, experimeantal
data existed for two cases, cases 12 and 13. These values were used as the
Allison correlatioa leakage rates, Wea)o, for these cases. For case 1!

(a 10X-scale model), experimental rvesults existed for a 5X-scale seal at
the same flow conditions. This result was compared with the Allison design
model prediction for the full-scale seal. The ratio of leakage rates,
1.09, was applied to the 10X-scale Allison design model leakage rate to

obtain the final correlation value. For case 14, the experimental leakage
rate for case 12 (the three kaife stepped seal with rectaangular knives,
STLD) was compared with the design model full-scale leakage rate for the
case 12 seal. The ratio of these two leakage vates, 0.96, was then used to
correct the design model leakage cate for case 14, The assumption was
that the ratio between the experimental leakage and the design model for
the tapered kaives 1is the same as that for rectangular knives. The results
for the stepped seal cases are coatained in Table 2.

Exanination of the results for the atraight-through seal cases
Tabie 1 shows generally good agreement between the calculated leakage
rates and Allison correlation leakage rates. To better understand the
fmplications of the results presented in Table 1, it i¢ perhaps desfradle
to examine the cases ladividually ind/or in logical groupings.
Cases for which experisenal data are available, excepting case 8, the
three~knife straight-through seal with tapered knlves, show excelleat

agreemeat. The average discrepancy is 3%. The calculated leakage rate
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for case 8 is from 15 to 25 percent lower than that measured depeading on
whether a mixing length or a k-€ turbulence model was utilized in the
calculation. For this case the k—¢ turbuience model gives larger values of
turbulent viscosity than the mixing length model and, heace, thicker
boundary layers and less leakage. On the other hand the predicted aad
measured leakage rates for case 7, the three knife straight-through seal
with tapered knives at a pressure ratio of 4.98, shows excellent agreemeat,
the calculated value predicting only 1.5 percent more than the measured
value. The flow for this case was choked as the peak Mach number was
1.398. Examination of the flow for the other straight-through case where
the flow was choked and experimental data existed, case 5, indicates a
geaeral abiliCy to accurately calculate leakage rates for choked cases;

the discrepaancy between the calculated and measured leakage rates for this
case is approximately 0.9 percent.

For case 1, the siangle knife straight—through seal with a rectaagular
knife at a pressure ratio of 3.98, no experimentally measured value of
leakage rate was available. The correlation value predicts approximately
30 percent more leakage than the calculated value. This might be due to
the use of only 21 grid points in the traansverse direction which could
possibly lead to an underprediction of mass flux (this was the first case
run under this effort).

The three-knife straight-through seal with rectangular knives run at a
pressure ratio of 2.0, case 2, shows a reasonable agreement between the
calculated and the correlation leakage rates (no experimental data were
avallable for this casc). The calculated value of leakage was 1.7 percent
lower than the corvelation.

For the cases of the single knife and triple kaife straight-through
seals with slanted knives at a pressure ratio of 2.0, (cases 3 and 4) the
agreement between the calculated leakage rates and the correlation values
ave reasonable with an overprediction of leakage rates of 12 and 7 percent
for cases 3 and 4 respectively. From a computatfonal viewpoiant, these
cases are extremely difficult because of the geometric requirements that
the width of the base of the kaife blade is large compared to the width
of the tip of the knife blade, {.e., a ratio on the order of 100:l.

This not only causes difficulty {n genecating a grid structure, bhut
laherently ylelds a coordinate system that s highly skewed (as opposaed

to otthogonal) relative to the other cases considered la this study.
Because the flow runalng up the leading edge surface of the kanlfe
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is oriented at an angle greater than 90° to the incoming flow, this results
in extremely large gradients in the vicinity of the leading edge of the tip
of the knife, i.e., in the entrance region of the gap between the first
knife and the land. The large gradients require the use of a large number
of grid points in the vicinity of the leading edge in order to resolve the
large gradients. The existence of the large gradients in this region leads
to strong dissipation and hence the excellent performance of this seal.

In the case of the worn single knife straight-through seal, Qhe
calculated leakage rate underpredicts the measured rate by 5.8 percent and
1.2 percent for the mixing length and a k-¢ turbulence modelsrespectively.
In this case the k—e turbulence model in general predicts slightly lower
values of turbulent viscosity and hence a slightly higher leakage rate. In
both cases the discrepancy between the measured and calculated rates are
low.

The calculation of the flow in the three knife straight-through seal
with tapered knives at a pressure ratio of 2.0, case 8, was run in three
modes: (1) a mixing length model with a fully developed 1/7 power law
turbulent inlet profile with a 51 x 71 computational grid, (2) a mixing
length model with a turbulent inlet profile on the inlet land and rotor
equal to S0 of a clearance height with a 61 x 10l grid and (3) a k-¢
turbulence model with the same inlet profile and grid structure as in (2).
For the first two modes, the calculated leakage rate was approximately 15
percent less than the measured value, while for the k-¢ turbulence model
the calculated leakage rate was approximately 25 percent lower. In light
of the excellent agreement for the three knife straight=through seal with
rectangular knives and the single knife straight through seal with a
tapered knife, where the physical processes should be similar to the three
knife straight-through seal with tavered knives, the amount of the
discrepancy was unexpected. Possible reasons for the discrepancy could be
the existence of leaks in the experiment:]l apparatus, three-dimensional
effecte in the apparatus, the sudden expansion dowmstream of the last knife
blade (which did not exist in the calculation) or numerical truncation
error {n the calculation., Without efther repeating the experiment and/or
the calculation, it is difficult to draw any firm conclusions for case 8.
In addition, {t is interesting to note that pressure taps were placed at
key locatfons in the experimental apparatus (see Fig. 6), and that the

agreement hetweon the pressure calculation and experiment were excellent.
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For the three knife straight-through seal with tapered knives and
with a rough la&& (the roughness was produced by attaching a 30 grit
sand paper to the land) at a pressure ratio also of 2.0 (case 9),
the agreement between the calculated and measured leakage rate is
reasonable., The calculated leakage value 1is 1.4 percent lower than the
measured value. The wall roughness was simulated by using the method of
van Driest (Ref. 33) where a slip velocity is assumed on the rough wall,
Computationally this has the effect of making the boundary layer thinner
and hence more mass can pass through the device. The initial condition for
this case was taken as the converged solution for case 8B, The no-slip
condition on the land was then replaced by the van Driest model, and a
converged solution obtained. It is interesting to note that the effect of
the roughness was to increase the peak Mach number from 0.776 to 0.946.

Finally the last case considered was the three knife straight-through

seal with tapered knives and with injection at a pressure of 2.0
(case 10). 'The injection rate was chosen as nominally 10 percent of the
total leakage rate., The injection port was positioned in the land midway
between the first and second knives. Again the initial condition was taken
as the converged result of case 8b. The injection had the same effect as
land roughness on the overall leakage rate. The effect of the injection
(from a computational viewpoint) is that the amount of leakage is increased
over the noninjection case, (Note that no correlation value of leakage
rate is available for this case). One possible explanation is that the
injected fluid {8 not exposed to the large losses associated with the
leading edge of the first knife. The injection has only the rinimal local
effect of forcing the flow emerging from between the first knife and land
slightly further into the cavity region between the first and second
knives. Thus the tentative conclusion is that for this injection case {8
the effect is negative, i.e., the leakage rate is increased., Perhaps the
more desirable location for injection would be fn the vicinity of the
leading edge of the first knife to further increase the losses in this
critical region.

The results for the astepped seal configurations are presented in
Tahle 2. All cancs were run in the flow direction of small-to~large geal
diameters (STLD mode),  Experimental data exfated for casee 12 and 13,

Cases 11 and 14 had the predicted correlation leakage rates previously
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discussed. For the stepped seal configurations, only case 11 was run
under choked conditions. For this case the pressure ratio was 2.5
(all other stepped configurations were run at a pressure ratio of 2.0),
and the peak calculated Mach number was 1.229. The calculated leakage
rate was approximately 12 percent larger than the correlated value.
A gimilar trend was also noted for case 12, the three knife stepped seal
with rectangular knives, where the predicted leakage rate was 25 percent
higher than the experimentally determined rate. Possible reasons for this
discrepancy would be as was previously discussed for the three knife
straight-through seal with tapered knives., Again it is of interest to note
that the correlation between the measured and calculated static pressures
at key points in the seal is excellent (see Fig. 7). This result is
; similar to that observed for the case of the three knife straight through
| seal with tapered knives. The other stepped seal configuration for which
experimental data existed was case 13, the single knife stepped seal with a
slanted knife configuratiou. In this case, the predicted leakage rate was
8 percent higher than the measured value. The three kuife stepped seal
with tapered knives configuration (case 14) was calculated with both a
mixing length and a k-¢ turbulence model. The calculated results were not
) significantly different. The mixing length model predicting a leakage rate
4 about 10 percent higher than the correlated value, and the k-¢ turbulence
model predicting a leakage rate about 11 percent higher,

In general the capability of the numerical procedure to accurately
predict the leakage rates for a wide variety of seal configurations under
various flow conditions appears to be jusified. 1In the worst case the
prediction differed from the Allison cortelation value by 30 percemt, In
the vast majority of cases a more typical variation would be 5-10 percent,
and in many cases the predicted and measured values differed by only a few
percent. Since this was the first effort in applying this numerical
procedure to labyrinth seals, it {8 to be expected that future results
would be even more encouraging. A primary advantage of the calculation
procedure {38 that details of the flow are calculated at every point in the
flow, hence the manner in which the flow develops, the basic flow patterns,
etc. can be discerned immediately. Typlcal CPU calculation times for these
\ cages were on the order of 1.5 hours on a CDC 7600 at the Balliatic

Research Laboratory, i.e., about $500 per case at the overnight rate. In
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addition, recent efficiencies incorporated into the computer program used

in the above calculations, viz., in the vectorization on the CRAY
computers, have resulted and will result in even lower cost per case rates
in the future.

Plots of streamlines, velocity vectors and Mach number contours are
- shown for representative cases calculated in the leakage rate stddy
(Figs. 8 to 13). When the earlier cases were run, the capability to
calculate streamlines was not operational. However, basic streamline
8 patterns can be inferred from the velocity vector plots. The plots
' represent the flow only in the region of the knives., For all cases
investigated, a large clockwise streamwise recirculation was generated
downstream of the last knife for flow from left to right. Usually this was
accompanied by a small counterclockwise recirculation zone at the junction
of the downstream base of the last knife at the rotor. In some cases small
clockwise recirculation zones were calculated in the gap betwecn the
leading edge of the first knife and the land. When no recirculation zone -
1 was calculated in this region, .the flow was significantly decclerated due

to the strong adverse pressure gradient in this region. Iu all cases a
tecirculation pattern existed in the cavity reglons. In some cases & small

E counterclockwise recirculation zone would exist at the trailing edge of the
%f knives due to the separation of the flow. At the junction of the upstream
face of the first knife and the rotor cylinder, 2 small clockwise
recirculation zone would usually exist. 1In addition, in the case of
5 stepped seals, the flow would separate off the conva# corner of the land
. step forming a counterclockwise recirculation pattern, In general, the
controling location of the flow for the cases investtgated'appeared to be
the entrance region between the tip of the first knife and the land. In
this region the streamwise flow would a:celerste and large (on the order of

the streamwise velocity) transverse flows would be generated. At the inlet

X, Sy

regions of any downstream knives, the acce rrationg (and hence losses)
would be much less as the flow did not significantly turn {nto the cavity
regions. Thus, the flow enters the clearance gaps of the subsequent knives

with relatively small tansverse velocities and, hence, the loes 1s not

AJ

nearly as great as at the firs: knife. For the cases where the flow s
choked, an expansion pattern was predicted in the region of the exit of the
last knffe. This can be see: in the kach number contour plots where the
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gradient in Mach number is large, i.e., the Mach number contours are close

together,
3.2 Generation of Performance Curves

The purpose of the second classification of calculation was to
demonstrate that the computer code could be used to generate designers'
curves or performance plots for specific seal geometries. Specifically, it

is desired to comstruct curves of the flow parameter, ¢,

: $ = ___w;/F (69)
0
(where again W 1s the leakage rate, T, is the upstream stagnation
temperature, P, 1s the upstream stagnation pressure and A is the
clearance area over one of the knives) versus the expansion ratio,
Po/Pp, for a specific seal geometry. In this study two seal geometries
were considered: (1) a three knife straight through seal with tapered
knives, Fig. 3f, and (2) a three knife stepped seal with tapered knives,
Fig. 4c. Both of these geometries were considered in the previously
described leakage calculations. The main idea here is to generate the
curves for cases for which experimental data exist and for which the
Alligon design model can be used to generate similar curves. Demonstration
of the ability of the numerical procedure to produce reasonable performance
plots for these two designs would be part of the overall validation process
for the code. In addition, it would lend credence to the use of the
numerical procedure to generate performance curves for either advanced seal
configurations for which data did not exist or for investigating variants
of existing seal configurations such as the effects of injection, the
affects of various rotational speeds, the effects of wear on various seal
designs, etc. These curves could then be used by a designer of labyrinth
seal systems to investigate various candidate configurations without the
need for setting up experimental rigs. Using this as a method of
eliminating undesirable configurations, the designer would then be able to
experimentally investigate the performance of the remaining candidate
configurations. Considerable savings could be realized by the use of such
a process and, in addition, a better seal could be produced.
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The technique utilized in this study to obtain the performance plots
was started from a converged solution at a pressure ratio of 2.0. For the
two seal configurations considered in this study the converged solutions
from the previously described leakage investigation (cases 8B and 14A) were
used as the initial conditions, i.e., the pressure ratio of 2.0 cases. The
back pressures for these two cases were further lowered to a second desired
pressure and a converged solution obtained for these cases. This process
was continued at other back pressures, For this study converged solutions
were obtained for pressure ratios of 2,0, 2.5, 3.5 and 5.0, Initially for
both seal configurations the flow was unchoked. However, as the back
pressure was lowered the flow choked. For both cases considered, a mixing
length turbulence model was utilized.

Overall the use of the computational procedure to produce a
performance curve for the two seal configurations seems to be well
justified. The two curves produced, although not yielding quantitatively
the same results as the design model, gave curves that were qualitatively
similar to the measured data. .In addition, the prediction of the choke
points appear to be in reasonable agreement with the data. It is to be
expected, although this has not been demonstrated, that similar curves
could be generated for the other configurations considered in the leakage
rate study. In addition, the performance curves could also be generated
for alternate designs such as smaller or larger clearance, knife tip
thicknesses, slant angle, etce A major advantage would be the ability to
generate performance plots for configurations not presently in the Allison
or other design models.

Performance curves were generated for two seal configurations:

(1) the three knife straight-through seal with tapered knives and (2) the
three knife stepped seal with tapered knives. These seal configurations
are the same as those analyzed for leakage vates under cases 8 and 24,
i.e., Fig, 3f and Fig. 3e, respectively. Results for these two
configurations are presented in ¥igs. 14 and 15, For both cases the
calculated values of the flow parameters are compared with the experimental
data, the Allfson full-scale design model and the Allison design model
corrected for the effect of Reynolds number (previously discussed). Por
the three knife stepped seal with tapered knives no oxperimental data were
available, so in that case the experimental data for the three knife
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stepped seal with rectangular knives was used. It 18 expected that the
tapering of the knives would have a small effect on the performance of the
seal.

The results for the three knife straight-through seal with tapered
knives presented in Fig. 14 show that the calculated values of flow
parameter are lower than the measured values of fiow parameter by
approximately 15 per cent at all pressure ratiovs. This is consistent with
the results shown in the leakage study. Possible explanations for the
difference between the measured and calculated flow parameter could be the
following: (1) leaks in the experimental apparatus which would yield a
larger mass-flux, (2) hot wire measurement/calibration errors,

(3) under-resolution of the boundary layers in the calculation which would
lead to thicker boundary layers and hence less computational mass flux and,
(4) errors associated with the turbulence model used in the calculationm.

In addition, it is also possible that the three-dimensional experimental
apparatus might have had significant three-dimensional effects, and thus

a discrepancy would exist when comparing the results with a two-dimensional
calculation. The shape of the curves is similar and the predicted

choke point (somewhere between a pressure ratio of 2.5 and 3.5) is
consistent with the experimentally observed choke pressure ratio of 2.72.
The full-scale design model values of flow parameter are approximately

S percent higher than the calculated vaiues while the design model values
corrected for the apparent effect of Reynolds number are approximately

15 percent higher than the calculated values.

The results for the three knife stepped seal with tapered knives is
presented in Fig. 15, 1In this case the predicted values of the flow
parameter are approximately 10 percént higher than the measured values.
The shape of the calculated performance curve is of the same form as the
measured values. The calculated choke value of the pressure ratio is
approximately 3.5-4.0 which 1is consistent with the measured value of 3.84.
At the higher values of pressure ratio there is some scatter in the data.
In addition from Fig. 15 it can be seen that the full-scale Allison design
model uniforaly overpredicts the flow parameter for all pressure ratios.
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3.3 Comparison of Calculated and Experimental Results

To further validate the ability of the computational procedure to
accurately calculate the fiow in labyrinth seals, a comparison between
avsilable experimental data and computed results was made. Two labyrinth
seal configurations were considered in this effort: (1) the three knife
straight through seal with tapered knives (see Fig. 3f) and (2) the three
knife stepped seal with tapered knives {see Fig. 4c). For both of the
configurations extensive hot wire measurements were made as part of the
experimental portion of this contractual effort. Details of the
experimental work, performed by the Allison Gas Turbine Division, GMC, are
reported in Ref. 25. In addition details of the experimental techniques,
data reduction, etc. can be found in the above-mentioned reference. Both
seal configurations considered were tested at pressure ratios of 2.0, and
these are the cases that wil) be cousidered in this report. Schematics of
the two seals are shown {in Figs. 16 and 17. Probe locations are noted by
the stations A, B, etc.

For the straight-through seal configuration probes were made in the
centers of the first and third knife tip clearance gaps, i.e., stations B
and I. Probes were also made at 0.20 inches upstream and downstream of the
edges of the knife tips, j.e.,, at stations A, C, E, G, H, and J .
Additionally, a probe was made at the half point of the first cavity, i.e.,
gtatfon D . Measurements in the clearance gaps consist of the streamwise
velocity component while measurements fore and aft of the knife tips and in
the first cavity consist of both streamwise and transverse velocity
components.

For the three knife stepped seal with rapered knives, probes were made
in the centers of cach knife tip in the clearance gaps, {.e., stations 8,
F, and T of Fig. 17. The measured results for this seal consist of the
streamvise velocity component only.

The calculations used for the comparison were previously deacribed 16
the section on the calculation of leakage rates, specifically cases BC
and 148. Both of the computed cases utilized a k-€¢ turbulence model to
account for the effects of turbulence. The governing equations consisted
of the two momentum equations, the continuity equation and the energy

equation. Boundary conditions werte as previously described. Cases RC
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and 14B utilized the mixing length solutions of cases 8B and 14A
respectively as initial conditions. The two turbulence equations, the
turbulence kinetic energy equation, Eq. (27), and the dissipation of
turbulence kinetic energy equations, Eq. (28), were then solved to
convergence with the fluid dynamic variables, u, w, p and h frozen to
obtain initial values of k and €. Then the fluid dynamic and the k and ¢
equations were simultaneously solved until a steady state solution was
obtained.

The results for the three knife straight-through seal with tapered
knives are presented in Figs. 18 through 23. For the flow across the
centerline of the clearance gap at the tip of the first knife (Fig. 18),
the calculated flow is uniformly of lower velocity. Qualitatively the
shape of the streamwise velocity profile is similar with both measured and
calculated profiles showing a tendency of the flow to separate on the tip
of the knife. 7This can be seen by the shape of the streamwise velocity
profile on the knife tip having a significantly smaller gradient (skin
friction) than on the land. The measured velocity profile eshows a thinner
boundary layer on both the knife tip and the land than the predicted
boundary layer profile. The measured profile shows no discernable boundary
layer on the land. The difference in the magnitude of the calculsted and
measured streamwise velocity is consistent with the results of the leaskage
study where the calculated leakage rate was lower than the measured value
(as was previously discussed). The results for the streamwise velocity
profile in the clearance gap at the third knife tip (Fig. 19) again shows
uniformly lower calculated values than those measured. 1In this case the
meagsured profile shows a monotonically tncreasing streamwise velocity as
the distance from the knife tip 18 increased. The calculated velocity
profile shows a slightly skewed profile around the centerline in the middle
of the gap with the tip boundary layer being somewhat thicker than the land
boundary layer. Again the measured results show no discernable boundary
layer on the land,

The results i{n the region 0.20 inches upstream of the leading edge of
the first knife are presented in Fig. 20 and the tabulated data ate
pregented in Table 3. Qualitatively the experimental data agree with the
calculated flow angles., (If the calibration of the hot-wire is valid, flow
angles and velocity magnitudes should be accurate to a few perceat).
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The velocity magnitudes calculated are uniformly lower than those measured
which is again consistent with the calculated leakage rate being lower than
the measured values.

The results in the cavity regions between the knives are presented in
Figs 21 and 22. Fig. 21 shows the calculated and measured velocity vectors
in the first cavity and Fig 22 shows the calculated and measured velocity
vectors in the second cavity. The corresponding tabular values are
presented in Table 3. In the cavity between the first and second knives
the calculated and measured flow angles are quite similar, viz., the flow
angles very nearly match. This indicates that the sizes and locations of
the recirculation zone are similar. Generally the measured values of the
velocity in the cavity are higher than the calculated values. However, in
the region ahove the recirculation zone the calculated magnitude of the
velocity is higher at stations C and D and lower at station E.

In the cavity between the second and third knives the results are
similar to those in the first cavity, The flow angles predicted by the
calculation are a good approximation of the mecsured values, sec
Table 3. Again the measured speeds in the recirculation zon: are higher
than those calculated. The behavior of the gpeeds above the recirculation
zone is the same as in the first cavity, {.e,, at station G the calculated
speeds are higher than measured and at station H the calculated speeds are
lower than the measured speeds.

At the last station where specis and flow angles were measured,
station J , measurements show a considerably dfffareat flow strecture than
that calculated (see Pig. 23 and Table 3). The calculated flow angles do
not in general agree with the measured values. The calculated specds
behind the knife are of approximately the same magnitude as those
weasured, Howoever the calculated speed at the upper most data point s
over three times the measured value. The calculation predicts a larger
recirculation zone downstream of last knife than the measured data seea to
predict. Although tt s difffcult to determine from the limited amount of
data available in this region, the measured recirculation zone appeats to
5e¢ much thinner than the predicted one.

The results for STLD flow through the three knife stepped seal with
tapered knives are presented {n Figs. 24 through 26. Qualitat{vely the
cumputed and measured values of the streamwise velocity profiles in the
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clearance gaps above the first and second knife tips are similar. In the
first knife tip clearance gap (FPig. 24) the peak velocities are of

approximately the same value, while in the second knife tip clearance gap
the calculated peak velocity is 16 percent lower than the measured value.

At the first knife tip no discernible land boundary layer is observed
in the measurements. In the case of the stepped seal (which is contrary to
the case of the straight-through seal) the calculated flow has a somewhat
lesser tendency to separate over the leading edge of the first kaife than
does the measured flow.

For the second knife (Fig. 25) the calculated boundary layer profile
over the knife tip is very similar to the measured one.

For the third knife tip clearance gap (Fig. 26) the measured flow is
qualitatively similar to that measured for the previously described
straight-through seal, A monotonically 1ncreasing streamwise velocity
profile with increasing normal distance from the knife tip is observed in
both cases. Again no discernible measured boundary layer is seen on the
land, - Although qualitatively the calculated and measured profiles are
divsimilar, the peak speeds for the two profiles are within a few percent
of e&ch-other. -As with the three knife strntght-thrbugh seal with tapered
knives, the measured date would seem to indicate a smallor recivculation
zone downstream of the last stepped scal knife and hence a more rapid
expansion than that predicted by the calculation. '

| In general the coaparisons hetween the measured and the calculated
flous are encdurag!ng. Since this s the first effort to hoth predict the
flow in such environments and to perform detafled measurements on these
types of labyrinth seals, the results are better than amight have been
articipated. Morc experience in both the experimental and analytical
efforts should lead to considerable {mprovements it both areas. An
fmportant point to de mentioned at this juncture is that wo attempt was
made to 'fine tune' the calculatfons to get better coaparisons with the
experimental data. The analysis models were {n fact run before the test
data were avaflable. The mcasured data coaparison was performnd with wodel
calculations that were not influenced by the expecrimental program,

The type of 'tuning' vhich c¢ould be examined would concern improving

the numerical accuracy and modifying the inflow profiles to more accurately
reflect the conditions (apparently) accurring (n the expecrimental neals.
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3.4 Rotating Labyrinth Seal Calculation

The first three categories of calculations performed in this study
were concerned with "two-dimensional” labyrinth seal configurations. having
a rectangular clearance gap. All experimental cases were run with a
spanwise dimension of 6.28 inches to simulate the static test rig,

The flow through the clearance gaps would essentially be two-dimensional at
the experimental aspect ratios, i.e., the endwall effects were neglected.
Most practical applications of labyrinth seals are for rotating equipment
in which case an axially symmetric set of coordinates must be used to
describe the seal geometry. In order to demonstrate this capability a
sample case was run with rotation.

The three knife straight seal with tapered knives was chosen with the
knife side rotating for demonstration at a pressure rativ of 2.0. As in
the nonrotating case the flow was initially assumed to be stagnant and the
back pressure lowered. The flow was then drawn t':irough the seal and the
basic nonrotating flow pattern established. Then the rotor was turned
until the desired rotational speed was obtained and the converged solution
with rotation was obtained. The equations solved are the transformed
cylindrical polar Navier-Stokes equations. The transformation is required
because of the tapered knives which yleld a nonorthogonal cocrdinate
system. Three separate momentum equations, the continuity equation and
an energy equation are solved. Because of the rotation of the rotor,

a rotational momen:um equation must be solved even though all rotational
derivatives are zero. The physical dimensions for the seal configuration
chosen are shown in Fig. 3g. In addition the radius of the inner
cylindrical surface of the rotor was arbitrarily chosen as 0.254 metere
(or 100 clearances) and the rotational speed was chosen as 6,000
revolutions per minute, 628 radifans per sec.

A sample & —eamline plot in the vicinity of the first knife for the
rotating seal case is shown in Fig. 27. Qualitatively the streamline
patterns are the same as for the nonrotating case. The steady
state value of the flow parameter for the rotating case wan
0.315 1bm °R1/2/1bf-sec vs 0.331 lbm °R!/2ibf-gec for the nonrotating
case. Thus the calculated overall effect of the cylindrical symmetry and

the rotational effects is to decrease the value of the flow parameter
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(ané hence comparable leakage rate) for this seal configuration by about
5 percent over the nonrotating case.

Another effect predicted by the calculation procedure was the rather
large amount of swirl velocity that exists far downstream of the last
knife, Since the height of the knives are 11/12 of the total distance from
the rotor cylinder to the land, the knives impart large amounts of swirl
into the upper portion of the flow domain (the knife tip speeds are 12.6
times the mean inlet velocity and 7! percent of the peak streamwise
velocity downstream of the last knife tip). In the immediate vicinity fo
the trailing edge of the last knife, the swirl is rather rapidly dissipated
by the large viscous effects (at one clearance downstream the swirl
velocity has decreased to 45 percent of the peak tip velocity). However
downstream of this region the losses are much smaller. At 100 clearances
downstream the swirl velocity drops by 18 percent. Thereafter the
decreases in the swirl level become essentially zero., This is probably due
to the small viscous forces in the core of the flow far dewnstream and the
lack of a circumferential pressure gradient. On the other hand in the
region upstream of the first knife, the extent of the penetration of the
swirl into the flow is minimal. The swirl imparted into the flow by the
rotor is small upstream of the first knife. As the first knife is
approached some of the swirl 1s convected away from the rotor surface by
the increasing trangverse velocity (caused by the turning of the streamwise
velocity to flow over the knife).

The general observation for the rotation case is that the code appears
to be able to successfully calculate seal flows in the presence of
rotation. In future work this should probably be an area where
considerable effort sﬁould he expended both experimentally and
computaticnally as this 18 the actual environment in whi{ch real seals

exist,

47

'u*-9~' .(.0»'.' AN NI » LU SRR e,
o T R et AT o e da, D e N S e Nt A AT



4.0 CONCLUSIONS

The results of this first effort to calculate the flow in labyrinth
seals by the numerical solution of the Navier-Stokes equations {s very
encouraging. It has been demonstrated that the flow in a wide variety of
realistic labyrinth seal geometries can be calculated under various rlow
conditions. The flow in both straight-thrdugh and stepped seal geometries
has been successfully calculated. Both orthogonal and nonorthogonal
coordinate systems have been used, and the flow has been calculated for
both a planar and axisymmetric system. Pressure ratios as large as five to
one have been calculated with no apparent problem. Seals with multiple
knives have been considered, and the flow was successfully predicted. A
variety of boundary conditions have been successfully utilized in these
calculations, and a general starting procedure has been developed that can
be used with any seal geometry and for any pressure ratio. The numerical
procedure has proven to be robust, i.e., all calculations that were
attempted produced converged solutions. Both mixing length and
two-equation turbulence models were successfully used for the
calculations., Numerical difficulties often associated with the
two-aquation (k-e) turbulence model were eliminated and converged solutions
obtained for cases that had not previously converged with the use of the
k-¢ turbulence model. Calculation of the flow for an axisymmetric rotating
labyrinth seal presented no problem either with the physics or in
numerically converging the case.

Comparison of the calculated results with expe~imental results was in
general very encouraging, especially when it is remembered that this {s the
first effort for these classes of geometries. The computer code has
demonstrated an ability to accurately calculate the leakage rates for a
w'de varfety of geomotries and flow conditions. The two notable exceptions
ate the three knife strafght-through seal with tapered knives and three
knife stepped seal with recangular knives at piessure rat'ss of 2.0,

The comparison of the hot-wire data with the calculated results for the
three knife straight-through ueal with tapered kaives shows qualitatively
similar reaulets. The throe knife stepped secal with tapered knives

nhown good qualitat lve agrecoment hotwoen experiment and calceulatton,

The performance curves predicted by the caleulatton procedure gesncrated




curves similar to experimental data and to those predicted by the Allisonm
design model. A major advantage of the calculation procedure would be 1its
ability to calculate these performance curves for labyrinth seals for which
there is no data base.

The calculations performed under this effort required a reasonable
amount of computer time. Further, it is expected that in the near future
with a vectorized program typical calculations could be run for on the
order of less than $200 per data point. It is hoped that the computer code
will be integrated into the design process in the near future. Because of
the very general nature of the computer code, i.e., it has the ability to
accept any reasonable coordinate system and to perform calculations in that
system, it would be desirable to utilize the code to perform calculations
for advanced seal concepts. Finally, it would be desirable to perform
calculations for actual full-scale labyrinth seals in the rotating mode as
this is the envircnment that is actually experienced in sealing

applications.

49

------ *

SO AT WYV RS G IRR  SRIVR IR IR 5 W v oy

et

« .
- » i
Ly'3 % "{'s.

ok




=

LA

£
h
!
‘."

MEE DR acac S )

1.

2.

3.

b
5.

6.

7.

8.

9.

10.

i1,

12.

13.

4.

15.

1,

SN

K .
TR l LJ..\ ‘4;.‘

REFERENCES

The Labyrinth Packing, Engineer, Vol. 165, No. 4280, Jan. 21, 1938.

Parsons, C.A.: Electrical Lighting at Cambridge, Engineer,
Nov. 4, 1892.

Becker, E.: Stromungsvorgange in Ringformigen Spalten, V.D.I.,
Vol. 51, 1907,

Martin, H.M.: Labyrinth Packings, Engineer, Jan. 10, 1908.
Stodola, A.: Steam nd Gas Turbines, sixth edition, Vol. 1, 1927,

Trutnovsky, Ke.: Beruhrungsfreie Dichtungen, V.D.I., Verlag, Berlin,
1943 (Library of Congress call No. TJ529T78).

Zabriskie, W., and Sternlicht, B,: Labyrinth Seal Analysis, Journal
of Basic Engineering, Trans. ASME, Series D, Vol. 8}, No. 3,
Sept. 1959.

Roache, P.J.: Computtional Fluid Dynamics, Hermosa Publishers,
New Mexico, 1972.

Peyret, R, and Viviand, H.: Computation of Viscous Compressible
Flows Based on the Navier-Stokes Equations, AGARD-AG-212, 1975.

MacCormack, R.W.: The Effect of Viscosity in Hypervelocity Impact
Cratering, AIAA Paper No. 69-354, 1969.

Widhopf, G. and Victoria, K.: On the Solution of the Unsteady
Navier-Stokes Equations Including Multicomponent Finite Rate
Chemistry, Comput. Fluids, Vol. 1, 1973, pp. 159-184.

Briley, W-R. and McDonald, R.: Solution of the Multidimensional
Compressible Navier-Stokes Equations by a Generalized Implicit
Method, Journal of Computational Physics, Vol. 24, 1977, pp. 372-397,
1977.

Shang, J.S. and Hankey, W.L., Jr.: Numerical Solution of Shock
Wave-Turbulent Boundary-Layer Interaction, AIAA Journal, Vol. 14,
No. 10, October 1976, p. 1451,

Favre, A.J., The Fquations of Compressible Turbulent Gases., Annual
Summary Report No. |, Institute de Mechanigue Statistique
de la Turbulence, January 1965.

Kolmogorov, A.N.: Equations of Turbulent Motion of an Incompressible
Turbulent Fluid, I1ZC Adak. Naut. SSSR Ser. Phys. VI, No. 1~2, 56,
1942,

Lmeder ;. RoB, and Spalding, DR, The Numerical Computation of
Turbulent Flows. Computer Methods in Applied Mechanics and
Enginecering, Vol. 3, 1974,

50
A ‘A;‘d‘;&‘d {'_h‘ “ .-‘ i . f‘ ‘ﬂn‘.ﬂ' -3.. .-_fh Y Wagi) ¥ .'. ce ‘| :‘f_“}l},t..Q W Q\ PR "‘ N oo, oW e ﬁ.‘L.'} ‘l “-.‘" ',". .‘E



REFERENCES (Continued)

17. Jones, W.P. and Launder, B.E.: The Prediction of Laminarization with
a Two-Equation Model of Turbulence. Int. J. Heat Mass Transfer,
Vol. 15, 1972,

- 18.  Buggeln, R.C., Briley, W.R. and McDonald, H.: Solution of the
Navier~Stokes Equations for Three-Dimensional Turbulent Flow with
Viscous Sublayer Resolution, AIAA Paper No. 81-1023, 1981,

19. Gibeling, H.J. and McDonald, H.: Development of a Two-Dimensional
Implicit Interior Ballistics Code. Contract Report ARBRL-CR-00451,
March 1981.

20, Thomas, P.D. and Lombard, C.K.: The Geometric Conservation Law =
A Link Between Finite~Difference and Finite-Volume Methods of Flow
Computation on Moving Grids. AIAA Paper No. 78-1208, 1978.

21. Liu, N.-8., Shamroth, S.J. and McDonald, H.: Numerical Solution of
Navier-Stokes Equations for Compressible Turbulent Two/Three
Dimensional Flows in the Terminal Shock Region of an Inlet/Diffuser.
NASA-CR-3723, August 1983,

22.  Schlicting, H.: Boundary~Layer Theory, Sixth Edition, McGraw-Hill
Book Company, 1968, pp. 192-193.

23, Maise, G. and Mchonald, H,: Mixing Length and Kinematic Eddy
Viscosity in a Compressible Boundary Layer. AIAA Journal Vol. 6,
No. 1, Jan. 1968. PP+ 73-80,

24, Lindemuth, I. and Killeen, J,: Alternating Direction Implicit
Techniques for Two-Dimensional Magnetohydrodynamic Calculations.
Journal of Computational Physics, Vol. 13, pp. 181, 1973,

25, Beam, R.M. and Warming, R.F.: An Implicit Factored Scheme for the
Compressible Navier-Stokes Bquations. AIAA Journal, Vol. 16,
PP 393”“02. 1978,

26. Briley, W.R. and McDonald, H.: On the Structure and Use of
Linearized Block Implicit Schemes. Journal of Computational Physics,
Vol. 36. PP 54'72. 1980.

27. DNouglas, J. and Guan, J.E.: A General Pormulation of Alternating
Direction Methods. Numerische Math., Vol. 6, pp. 428-453, 1964,

28. Briley, W.R., Buggeln, R.C. and McDonald, H.: Computation of Laminar
and Turbulent Flow in 90 Degree Square Duct and Pipe Bends Using the
Navier-Stokes Equations. SRA Rpt. R82-920009-F, 1982.

29, Shamroth, S.J., McDonald, H, and Briley, W.R.: A Navier-Stokes

Solution for Transonic Flow Through a Cascade. SRA
Rpt. 81-920007-F, 1982.

51

-

e N g T B Y T Y e T e A A e S D e



30.

31,

32.

33.

34.

R RSN LIRS SRR

REFERENCES (Continued)

Tipton, D.L., Scott, T.E. and Vogel, R.E.: Labyrinth Seal Analysis,
Volume III - Analytical and Experimental Development of a Design
Model for Labyrinth Seals, AFWAL-TR-85-2103, Volume III, January
1986,

Ames Research Staff: Equations, Tables, and Charts for Compressible
Flow. NACA Report 1135, pg. 19, 1953,

Williamson, J.W.: An Extension of Prandtl's Mixing Length Theory.
Applied Mechanics and Fluids Engineering Conference, ASME, June 1969.

Van Driest, E.R.: On Turbulent Flow Near a Wall. Journal of the
Aeronautical Sciences, November 1956.

Beam, R.M. and Warming, R.F.: An Implicit Finite-Difference

Algorithm for Hyperbolic Systems in Conservation Law Form.
J. Comp. Physics, Vol. 22, 1976, p. 87,

52

vt et &

A o0

b l %> !.E.!.!. v!



LIST OF SYMBOLS

Symbols
A Area or matrix of time linearization coefficients
Ccp Specific heat at constant pressure
c1 Constant for two equation turbulence model
co Constant for two equation turbulence model
ey Constant for two equation turbulence model
D Rate of deformation tensor or elements of spatial
differential operators
F Vector of convection and diffusion terms
(Eqs.(31)~(33))
H Vector of time terms
h Enthalpy
J Jacobian
k Turbulence kinetic energy
L Matrix of linear differential operators
Lm Mixing length
°
m Mass flux
M Mixture molecular weight
n Unit vector in normal direction
;e Unit vector in symmetry direction
P Pressure
Pr Prandt]l number
3 Heat flux vector
R Universal gas constant
Re Reynolds number
r Seal expansion ratfo
] Vector of source terms (Eq.(34))
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t Time

T Temperature

U Velocity component

6 Specific ianternal energy

u Cartesian velocity component

v ‘ Average velocity

3 Velocity vector

W Vector of flux variables (Eq.(30)) or mass flux
X Cartesian coordinate

y General coordinate

Greak Symbols

8 Crank-Nicolson factor

4 Change

§ Kronecker delta

€ Dissipation of turbulence kizetic 2nergy

0 Rotational direction

K Thermal conductivity

u Dynamic viscosity

v Kinematic viscosity

(v} Density

g Dissipation parameter

1 Stress Leagor

L] Energy dissipation

¢ Vector of dependanl variables or flow paraneler
54

M O AR S G N g ARt e




Subscripts

art Artificial

call Calculated

corr Correlated

D Downstream

L Laminar

a Normal

o Stagnation

8 Symmetry

T Turbuleac

Ty First tangential directior

T2 ' Second tangential direction

w Wall

X4 Associated with 1th Cartesian direction
;j Associated with jth Cartesiea direction
1 First direction

2 Second direction

3 Third direction

Sugerscrtgts

n ath time step

T Transpose

* First {ntermediate time level
* Second {ntermediate time leval
* Fluctuation

1 First direction

2 Second direction

3 Third directlon
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Figure 8 - Velocity Vectors - Single Knife Straight-Through Seal with a
Tapered Knife.
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Figure 12 - Streamlines - Three Knife Stepped Seal with Tapered Knives.
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APPENDIX A - TRANSFORMATION

It is desired to show that given the general traneformation

(A-l)

y! . v’(f..ig.i,)
that the relationship
. L
-&u_"_’:’_;.o {A-2)

53} ég%

ts valid. S@a:&}sﬁ'iﬁ Section 2.2, J {¢ the Jacobian of the transformation
Bq. {&-1}. Applylag the chain rule o Bq, (A-1) ylelds the relatioaships

ay! ay! 0%,
Wi i by (a-2)
dy %y 9y

Writing Bq. (A-]) for each of the three k directions for one yJ ylelds
three lincar relationships for the unknowns 3yl/3xy. These can be
solved by applyting Cramere rule to yield for j=1,2 and 3 rospectively

dy' oF, oK, o, oF, -
J— = -
g%, ay? o ay® ot

‘ .
A s
ox, ay? Y ay? &yt

dy' oK 0K, OF, 0N, et
M AR R
) y oy y y
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SRR N I FET L /Y. 7w

o

, dy? 9%, OX, I, OF,
ax,  ay® oy dy' ay®
ay? 9%y X, oK, OF,

J = - -
ax, ay® dy' oy oyd
ay?  ox, oK, Ox, 9%,

J s - —
xy > ¥

, oy} o%, OX, 0%, OF,
ok, oy a?r  ayd o

>  ox, K,  O%, OF,
ok, ' w* o o

dyd IR, O%, O, O,
iw, &y &

Substitution of relationships (A-4) through (A-12) into Eq. (A-2)
substantiates the validity of Eq. (A-2).
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These relationships (A-4) through (A-12) and the definition of the
Jacobian, J, (Eq. 42), are used to calculate the geometric groupings that
occur in the governing system of coupled partial differential equations
represeanted by Eq. (46) and the auxiliary relationships represented by
8qs. (47)-(50). These geometric groupiangs are calculated by finite
difference techniques in an gnalogous manner to that used for the fluid
dynamic derivatives. A finite differeace grid distribution 1is setup in the
computational domain (yl) and grid poiats are associated with the
cartesian location (xg). All derivatives of the form 3;1/3yj are
then approximated by their fianite differeace analog, i.e., ceatral
differences for interior grid points and three poiant one-sided
approximations on bouandaries Once these derivatives are calculated for

all values of i1 and j the Jacobian J and the geometric gtbupings,

"represented by Eq. (A-4) through Eq. (A-12) can be calculated.
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APPENDIX B - SOLUTION PROCEDURE

Background

The aolution procedure employs a consistently-split linearized block
implicit (LBI) algorithm which has been discussed in detail in Refs. 12
and 26, There are two important elements of this method:

(1) the use of a noniterative formal time linearization to

produce a fully-coupled linear multidimensional scheme which

is written in "block implicit” fofm; and

(2) solution of this linearized coupled scheme using a consistent
“gplitting” (ADI scheme) patterned after the Douglas—Gunn (Ref. 27)
treatment of scalar ADI schemes.

The method is thus referred to as a split linearized block implicit (LBI)

scheme. The method has several attributes:

(1) the noniterative linearization is efficient;

(2) the fully-coupled linearized algorithm eliminates instabilities
and/or extremely slow convergence rates often attributed to methods
which employ ad hoc decoupling and linearization assumptions to
identify nonlinear coefficients which are then treated by lag and

update techniques;

(3) the splitting or ADI technique produces an efficient algorithm
which 18 stable for large time steps and also provides a means for
convergence accelevation for further efficlency in computing steady

solutions;

(4) intermediate steps of the splitting are consistent with the
governing equations, and this mcans that the “physical™ boundary
vonditions can be used for the intermediate solutions, Other
splittings which are {nconsistent can have several difficulties fn

satisfying physical boundary conditions (Ref. 12).

(9) the convergence rate and overali efffcfency of the algorithm are
much less sensitive to mesh refinement and redistribution than
algorithms based on explicit schemes or which employ ad hoc
decoupling and lincartization assumptions. This {s tmportant for
accuracy and for computing tutbulent flows with viscous sublayer

resolution; and
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(6) the method is general and is specifically designed for the
complex systems of equations which govern multiscale viscous flow
in complicated geometries.
This same algorithm was later considered by Beam and Warming (Ref. 25), but
the ADI splitting was derived by approximate factorization instead of the
Douglas-Gunn procedure. They refer to the algorithm as a "delta form"
approximate factorization scheme. This scheme replaced an earlier non-delta

form scheme (Ref. 34) which has inconsistent intermediate steps.

Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations toc be solved consists of three or four
equations: continuity and two or three components of the momentum equation
in three or four dependent variables: o, u, v, and/or w. Using notation
similar to that in (Ref. 12), at a single grid point this system of equations
can be written in the following form:

(eI /3t = D(4) + S(¢) (B-3)

where ¢ is the column-vector of dependent variables, H and S are column-
vector algebratc functions of ¢, and D is a column vector whose elements are
the spatial differentinl operators which generate all spatial derivatives
appearing in the governing equation associated with that element.

The solution procedure is based on the following two-level implicit
time~dffference approximations of (B=-3):

+ +
n+d n l+

™ wMy/ae = 8™ e ™Yy« (1-8) (0" + 5N (B-4)

where, for example, H*l denotes H(4P*!) and At = ¢'*l - ¢n, The
parameter B8 (0.5 < 8 ¢ 1) permits a variable time-centering of the scheme,
with a truncation error of order {At2, (8 - 1/2) Ac).

A local time linearizatfon (Taylor expansion about 4") of requisite
formal accuracy i{s introduced, and this serves to define a linear differen~
t{al operator I, (cf. Ref, 12) such that

n+l

o™ - ™+ L™

- +o(ad) (B=5)
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Simitarly,

n+l n+l

1. 1% uae)” (o™ - 4™ + 0 (acd) (B-6)

s . g as/an™ (6 - o) + 0 (acd) (8-7)

Eqs. (B-5 through B-7) are inserted into Eq. (B-4) to obtain the following
system which 18 linear in ¢0+!

(A - Bat LY (4" - 4™ = ac (0" + 8T (B-8)

and which is termed a linearized block implilcit (LBI) scheme. Here, A

denotes a matrix defined by

A= (30/34)" - Bac (3s/3p)" (8=9)
Eq. (B-8) has 0 (At) accuracy unless H = ¢, in which case the accuracy is the
same as Fq. (B-4).
Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate
cross—derivative terms and also turbulent viscosity and artificial dissipa-
tion coefficlents which depend on the solution variables. Although formal
linearization of the convection and pressure gradient terms and the resulting
fmplicit coupling of variables is critical to the stability and rapid con-
vergence of the algorithm, this does not appear to be important for the
turbulent viscosity and artificial dissipation coefficients. Since the
relationship between up and dy and the mean flow variasbles is not conveun-
fently linearized, these diffusive coefficients are evaluated explicitly at
th during each time step. Notationally, this is equivaleat to neglecting
terms proportional to 3 ug/3¢ or 3dj/3¢ in L", which are formally pre-
sent {n the Taylor expansion (B=5), while retaining all terms proportional to
ue ot dj in both L and DO,

1t has been found through extensive experionce that this has little {f
any effect on the performance of the algorithm, This treatment also has the
added benefit that the turbulence model equations can be decoupled from the
system of mean flow equations by an appropriate matvix partitioning
(cf. Ref. 26) and solved separately in each step of the ADI solution
procedure, This reduces the bdblock size of the block tridiagonal systems
which must be solved in each step and thus reduces the computational labor.

In addition, the viscous terms {n the present formulation include
a number of cross-derivative terms implicitly within the ADI treatment

vhich follows. It is not at all convenient to handle these implicit
cross~derivative terms; and congequently, all cross-derivative
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terms are evaluated explicitly at t%, For a scalar model equation representing
combined convection and diffusion, it has been shown by Beam and Warming that the
explicit treatment of cross-derivative terms does not degrade the unconditional
stability of the present algorithm. To preserve notational simplicity, it is
understood that all cross-derivative terms appearing in L® are neglected but

are retained in D". It is important to note that neglecting terms in LP has

no effect on steady solutions of Eq. (B-8), since ¢"! = 0 and thus Eq. (B-8)
reduces to the steady form of the equations: DM + S0 = 0., Aside from

stability considerations, the only effect of neglecting terms in L" is to

introduce an 0 (At) truncation error.

Consgistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (B-8) is split using
ADI techniques. To obtain the split scheme, the multidimensional operator L is
rewritten as the sum of three “one-dimensional” sdb-operators Ly 1 =1, 2, 3)
each of which contains all terms laving derivatives with respect to the i-th
coordinate. The split form of Eq. (B~8) can be derived either by following the
procedure described by Douglas and Gunn (Ref. 27) in their generalization and
unification of scalar ADI schemes (as done in Refs. 12 and 26), or by using
approximate facrorization. For the present system of equations, the split

algorithmn {s given by

(A - BAtL?) (6" - &™ = ac " + sM (B~10a)

(A - 8ot (o™ - 4™ = (8" - 0 (B10b)

n+l

(A = Bacty) (8" - 4" = A (6" - o (B=10¢)

whete 0' and ¢** are cousistent intermediate solutions, If spartal
derivatives appearing i{n Ly and D are replace by three-point difference
formulas, as indicated previously, then each step 1n Eqs. (B~10a,b and ¢) can he
solved by a block-tridiagonal elimination,

Combintng Eas, (B~10a,b and c) pives

(A - BAtL?) Al - BAtL;) Ua - aa:ng) ™oy - e (0"« 8™ (8-11)

which approximates the unsplit scheme, Eq. (8-8) to 0 (4t2). Since the
{ntermediate steps are also conaistent approximattons for Eq. (B~8), physical
boundary conditions can be used for &% and ** (Refs. 12 and 26). Pinally,

since the Lg are homngencous operators, it follows from Eqs. (B-10a,b and ¢)

96




SRS (1] D DL THNGH SO L ] 50

SR T S
LA A

e

4

L 2
PSSR

e B
v % ,

3
*
[

5 ¢

that steady solutions have the property that ¢l = ¢t = ¢** = 40 and

satisfy

DM + SM = 0

(B-12)

The steady solution thus depends only on the spatial difference approximations

used for Eq. (B-12), and does not depend on the solution algorithm itself.
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